Positive results and counterexamples in comonotone approximation II

نویسندگان

  • Dany Leviatan
  • Igor A. Shevchuk
  • O. V. Vlasiuk
چکیده

Let En(f) denote the degree of approximation of f ∈ C[−1, 1], by algebraic polynomials of degree < n, and assume that we know that for some α > 0 and N ≥ 2, nEn(f) ≤ 1, n ≥ N. Suppose that f changes its monotonicity s ≥ 1 times in [−1, 1]. We are interested in what may be said about its degree of approximation by polynomials of degree < n that are comonotone with f . In particular, if f changes its monotonicity at Ys := {y1, . . . , ys} and the degree of comonotone approximation is denoted by En(f, Ys), we investigate when can one say that nEn(f, Ys) ≤ c(α, s,N), n ≥ N∗, for some N∗. Clearly, N∗, if it exists at all (we prove it always does), depends on α, s and N . However, it turns out that for certain values of α, s and N , N∗ depends also on Ys and in some cases even on f itself. The results extend previous results in the case N = 1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positive Results and Counterexamples in Comonotone Approximation

We estimate the degree of comonotone polynomial approximation of continuous functions f , on [−1,1], that change monotonicity s ≥ 1 times in the interval, when the degree of unconstrained polynomial approximation En(f ) ≤ n−α , n ≥ 1. We ask whether the degree of comonotone approximation is necessarily ≤ c(α, s)n−α , n ≥ 1, and if not, what can be said. It turns out that for each s ≥ 1, there i...

متن کامل

Some Positive Results and Counterexamples in Comonotone Approximation Ii

Let f be a continuous function on ?1; 1], which changes its monotonicity nitely many times in the interval, say s times. In the rst part of this paper we have discussed the validity of Jackson type estimates for the approximation of f by algebraic polynomials that are comonotone with it. We have proved the validity of a Jackson type estimate involving the Ditzian {Totik ((rst) modulus of contin...

متن کامل

Coconvex polynomial approximation

Let f ∈ C[−1, 1] change its convexity finitely many times, in the interval. We are interested in estimating the degree of approximation of f by polynomials, and by piecewise polynomials, which are coconvex with it, namely, polynomials and piecewise polynomials that change their convexity exactly at the points where f does. We obtain Jackson type estimates and summarize the positive and negative...

متن کامل

Nearly Comonotone Approximation Ii

When we approximate a continuous function f which changes its monotonicity nitely many, say s times, in ?1; 1], we wish sometimes that the approximating polynomials follow these changes in monotonicity. However, it is well known that this requirement restricts very much the degree of approximation that the polynomials can achieve, namely, only the rate of ! 2 (f; 1=n) and even this not with a c...

متن کامل

Comonotone Polynomial Approximation in L_p[-1, 1], 0 < p &le; &infin;

Let a function f 2 L p ?1; 1], 0 < p 1 have 1 r < 1 changes of monotonicity. For all suuciently large n, we construct algebraic polynomials p n of degree n which are comonotone with f, and such that kf ? p n k Lp?1; 1] C(r)! ' 2 (f; n ?1) p , where ! ' 2 (f; n ?1) p denotes the Ditzian-Totik second modulus of smoothness in L p metric.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Approximation Theory

دوره 179  شماره 

صفحات  -

تاریخ انتشار 2014